Overall Software Design



Each plant has it’s own requirements, but that said, the kernel of the control requirement quite often falls into a number of categories. Consequently the software to achieve the control required can be based on standard software modules. This document aims to identify those standard software modules, and to highlight their inherent qualities.



This is a list of the software items covered in this document.



Preface

� TOC \o "1-3" \n \p " " �1. Standard Motor Rung

2. Software Module for controlling Pumps/Motors.

3. Software Module for control of Queuing

3.1. Bubble Sorts

3.2. Highest Value Sorts

3.3. Comparison between Bubble & Highest Value Sorts

4. Software Element for Single Shot Flags

5. Software to Debounce Analogue signals

5.1. Simple method

5.2. Software to Debounce Analogue signals

6. Software to Debounce Digital signals

7. Software to produce Cyclic Flags.

8. Software Watchdog

9. Alarm Handling

9.1. Analogue Out Of Range - Detection and Handling

9.2. Alarm Checking for Pumps / Motors with Contactors

9.3. Alarm Checking for Pumps / Motors with Inverters

9.4. Alarm Handling on a Word Basis

9.5. Valve Positional Checking

9.5.1. Two Positional Valves

9.5.2. Proportional Valves

10. Conclusion

��Preface



Obviously every PLC includes other areas of control, including communications and SCADA interfaces. These control aspects need to be slotted into the software order, in a manner which best fits the bill. In all these areas of control it always worth remembering the scanning order of the software. It starts from the top of the software, scans the ladder code, updates it’s I/O tables and repeats the process.  Sometimes even within the same rung, knowledge of the order in which the rung is processed can be of enormous benefit to the software engineer. PLC’s which can represent the code in text form, act as an aid to the engineer, because knowing how the code is processed can provide two fold assistance. Firstly the operation of the rung becomes clearer, and secondly the order of the scanning can actually help in the designing of the software, particularly within a rung.



Where it is necessary to identify specifics of a particular PLC, such as refering registers, then the code samples are based on the Allen Bradley PLC software. 



In examples of code shown below, contacts identified with the word ‘Retain’, are actually contacts off the Output of the rung. This eases the understanding of the rung, since that branch of the rung is ‘Retaining’ the Output of the rung. It is done since it is easier to grasp the idea of what the branch is doing, rather than trying work out the source of the contact.



Where it is necessary to identify specifics of a particular PLC manufacturer’s ladder instruction set, then reference is made to Allen Bradley programming software.

�Standard Motor Rung

It might seem belittling to mention the most fundamental of rungs. But the basics of the software are so simple that there is rarely a need for ‘Latching Outputs’ - OTL’s and then having a separate rung, with an OTU ( Unlatch ) contact. There are many instances where software has been written using OTL’s and OTU’s as if it were a program written in a language such as BASIC. There are benefits to using Ladder software and it is known that a rung output is switched ON when the conditions are satisfied, but it is often overlooked that the rung output is switched OFF when the conditions are not satisfied. The output is not just left dangling, it is driven OFF. The only way to leave an output dangling is to jump over the rung of software.

      PreCon1   PreCon2       RunCon1  RunCon2   StopCon1  Estop   RunOutput

-------[ ]-------[/]------+---[ ]------[ ]-------[/]-------[/]-------(  )-

                          |

      Retain              |

-------[ ]----------------+



PreCon1	- PreCondition 1

PreCon2	- PreCondition 2

RunCon1	- Running Condition 1

RunCon2	- Running Condition 2

StopCon1	- Stopping Condition 1

Estop	- Emergency Stop

RunOutput	- Run Output

Retain	- The Output of the rung.



NOTE:	

- That the Running Conditions are in the same position in the rung as the Stopping Conditions, this is because they are ostensibly the same thing.

- If you have a run condition that doesn’t immediately come into effect, for example: The monitoring of the oil pressure, which can only monitored once the pump running is established, then this contact can be put into the ‘Retain’ branch of the rung.



There might well be other factors to introduce into this motor starter circuit; Protection against Multiple starting of the motor within an hour ( or a cooldown  period, from last run / start ), Restriction regarding simultaneous pump starts.

Software Module for controlling Pumps/Motors.



Every PLC which controls pumps/motors of a sufficient size, needs to control the starting and stopping of the motors in a very precise manner. Ensuring that pumps do not start at the same time, which might put excessive strain on the mains. ( This is particularly important when considering PLC cold starting ). The other aspect that pumps/motors require is duty cycling, this can be achieved using an efficient coding system, as described in a separate document.



Skeleton Order for PLC which control Pumps/Motors.

- Copy the inputs to the bits for internal manipulation.

- Cyclic Flag generation to restrict Pump Simultaneous Starting. Each motor/pump is assigned its own cyclic flag, the only time the pump can start is when the cyclic flag gets switched on ( for a single scan ), otherwise two motors/pumps could be started on the same scan of the PLC, before the Inhibition timer can be started. This would be particularly prevalent when the PLC is cold starting.�[ Cyclic flag generation can achieved efficiently, as later in it’s own section of this document. ]

- Pump Inhibition, stopping simultaneous starting of pumps.

- Automatic Duty Selection.

- Copy the outputs from the bits to the real live outputs.



Software Module for control of Queuing

Queuing can form the heart of the control of a PLC concerned with Filter Gallery control. The heart of queue control is a means of sorting the queue items once they have been assigned priority values. There are two common ways of sorting, both are iterative techniques, and thus take a few scans for the PLC to perform :-

Bubble Sorts



Bubble sorts are an effective sorting method and are performed by simply comparing the first number with the second and swapping them if the first one is greater than the first, the process is then repeated for second and third numbers, swapping them if the first one is greater than the second. This process has to be repeated for every pair of numbers stepping down the list, it then has to be repeated ‘n-1’ times, where ‘n’ is the number of items in the list. 



Highest Value Sorts



Highest value sorts - The sort is performed by searching down a list for the highest value, recording it as the highest priority, and then setting that particular register to zero, then when the search for the highest value is again performed it will find the second highest value. This process is repeated until the highest value found is zero, and thus all the active ( non-zero ) items in the list have been found.



Comparison between Bubble & Highest Value Sorts



The building blocks of a Bubble Sorts are small but are complicated by their indexing and repetition factors. The Highest Value sort can be more easily realised in PLC logic, it doesn’t have as many repetitions. It has two added advantages. The first is that the highest value is immediately available after the first scan of the sort, the second is that the sort can finish as soon as the all the non-zero values are found. Neither of these elements are true of a Bubble Sort.

�Software Element for Single Shot Flags

	It may seem strange at first but there are a few reasons for not using the PLC manufacturer’s supplied Single Shot instructions. In the Allen Bradley they are called ONS instructions. The disadvantages of these instructions is that the ONS instructions can only be used in simple rungs, they can only be used once, and their status is not very visible. Any software written with these instruction would need verification before confidence in it’s operation can be assured. ONS instructions operate by storing the status of the logic, on the previous scan, thereby confusing the user, particularly if there is more than one condition before the ONS instruction. I have experienced problems when using ONS instructions, and would need to test out the use of each ONS instruction before having confidence in it’s operation.

	I would advocate a simpler approach, one where the status and the operation are more evident. It requires the use of an additional rung at the end of the code, which makes a flag called ‘FlagX-1’ a copy of the ‘FlagX’. This means that when it used in the code, the flag can used immediately after the ‘FlagX’ contact, it can be used in a complex rung and can be used to catch either state of the flag, even within the same rung. The status of the flag is visible and it can be named ‘FlagX-1’ or ‘FlagX-1’. The reason for calling it ‘FlagX-1’ is because the during it’s use in the body of the software, it is a copy of the ‘FlagX’ which is a scan behind the status of ‘FlagX’.



This is a rung of logic designed to detect and latch in the output coil, if  EITHER the Rising OR Falling Edges of the ‘FlagX’ are detected. This would be cumbersome using in-built One Shot instructions.



      FlagX     FlagX-1                       FlagY

-------[ ]-------[/]------+--------------------(  )-

                          |

      FlagX     FlagX-1   |

-------[/]-------[ ]------+

                          |

      FlagY     RESET     |

-------[ ]-------[/]------+

     (=retain)



At the end of the ladder logic a simple rung has to be added.



      FlagX                                   FlagX-1

-------[ ]-------------------------------------(  )-



�Software to Debounce Analogue signals

Simple method



Obviously the way to debounce an analogue that ( for example ) starts a pump is have the start and stop levels for the pump at different heights. So that the pump once started continues until the stop level is reached. This doesn’t require any further explanation, but is identified so permit comparison with the more complex debouncing described in the next section.



      StrtLvl      StopLvl                    RunPmp

-------[ ]------+---[/]------------------------(  )-

                |

      Retain    |

-------[/]------+



Software to Debounce Analogue signals



Analogue debouncing needs to store the last X values of the analogue signal and then to find the mean between the X values to provide the debounced analogue signal. The number of values to be stored and the interval between the samples, being taken is dependent on the process requirements. The code below is tiggered by a flag that comes on every 10 secs, the mean is taken over ten registers, this is probably suitable for water flows etc...��The software is realised ( in Allen Bradley ) as below, the S24 register is the index register, any register addressed with a preceding ‘#’ is to be indexed / offset by the value contained in the index - S24.

�	N7:0	- contains the index ( transfered into S24 )�	N7:1 	- Sum of the ten registers�	N7:2	- Sum of the ten registers divided by 10  ( ie. = The Mean ) - Temp Register�	N7:10	- Register number 1�	N7:11	- Register number 2�	N7:12	- Register number 3�	N7:13	- Register number 4�	N7:14	- Register number 5�	N7:15	- Register number 6�	N7:16	- Register number 7�	N7:17	- Register number 8�	N7:18	- Register number 9�	N7:19	- Register number 10

	I:19.0	- Analogue input being debounced



    10SecPulse                            +--------------+

-------[ ]--------------------------------+ MOV N7:0 S24 +--

                                          +--------------+



                                          +--------------+

               This Multiply       +------+ MUL          +--

               block is not        |      +     N7:2     +

               essential but       |      +       10     +

               saves a register    |      +     N7:1     +

                                   |      +--------------+

                                   |

    10SecPulse                     |      +--------------+ 

-------[ ]-------------------------+------+ SUB          +--

                                   |      +     N7:1     +

                                   |      +    #N7:10    +

                                   |      +     N7:1     +

                                   |      +--------------+

                                   |

                                   |      +--------------+

                                   +------+ MOV          +--

                                   |      +     I:19.0   +

                                   |      +    #N7:10    +

                                   |      +--------------+

                                   |

                                   |      +--------------+

                                   +------+ ADD          +--

                                   |      +     N7:1     +

                                   |      +     I:19.0   +

                                   |      +     N7:1     +

                                   |      +--------------+

                                   |

                                   |      +--------------+

                                   +------+ DIV          +--

                                          +     N7:1     +

                                          +       10     +

                                          +     N7:2     +

                                          +--------------+



This enters the sampled value into one of the ten registers. Before it does that it subtracts the value that is about to get overwritten from the sum. Once the new value has been put into the register it is added to the sum. The mean is then calculated by dividing the sum by number of samples stored ( 10 ). The code is written in this manner to avoid the necessity for a rung dedicated to the addition of all ten registers. ( This is a lengthy task in PLC software requiring ten ( or as many as the number of samples stored ) addition instructions ).



The third rung required controls the index register, incrementing the index each time the sample is stored and ensuring that it wraps correctly. :-





    10SecPulse                            +--------------+ 

-------[ ]------------+-------------------+ ADD          +--

                      |                   +     N7:0     +

                      |                   +        1     +

                      |                   +     N7:0     +

                      |                   +--------------+

                      |

                      | +--------------+  +--------------+

                      +-+ GRT          +--+ MOV          +--

                        +     N7:0     +  +        0     +

                        +        9     +  +     N7:0     +

                        +--------------+  +--------------+



NOTE:	

	The S24 is not manipulated directly and is not relied on throughout the scan. The index is stored in N7:0 and is copied into S24 just prior to it’s required use.�	This analogue debouncing can be extended to debounce further analogues. Providing they require the same sample rate and the same number of samples over which the mean is to be taken, then there is only a need to allocate a some more registers and introduce another rung the same type as the second rung. ( The other rungs can be left in their singularity )





The sum can be calculated from the mean value by the use of an additional  ‘MUL’ block, ( the first instruction on the second rung ). Since these are integer registers rather than floating point registers, accuracy would be lost by using the mean value in this manner, but it would allow N7:1 to be a dummy register that could be used elsewhere. Depending on the number of registers available ( or their layout ), it might be worth considering, but it obviously increases the size of the ladder program, so a trade off has to be assessed.



Integer registers often restrict the accuracy of mathematics performed by PLC’s and this is no exception, the engineer must ensure that the maximum value of the sampled variable never exceeds a tenth of the register maximum ( ie: 32767 ). This may be circumvented by the use of a floating point register ( or double precision register ) for the sum of the ten samples. This may not possible to implement on the PLC used in a specific application, and thus the code is written to accomodate the most simple of PLC languages.



�Software to Debounce Digital signals

Digital debouncing is achieved using a timer that inhibits a change of state until X seconds after the state has changed. Note : that the software is debouncing both edges of the signal with a single timer, the more common approach would be to use two timers. The software is realised as below :-



      Input     Input-1                              ChngDet

-------[ ]-------[/]------+----------------------------(  )-

                          |

      Input     Input-1   |

-------[/]-------[ ]------+



      ChngDet                            +-----+      TmrDn

-------[/]-------------------------------+     +-------(  )-

                                         | TMR |

                                         |     |

                                         |     |

                                         +-----+

      Input     TmrDn                                Debouncd

-------[ ]-------[ ]------+----------------------------(  )-

                          |

      Retain    TmrDn     |

-------[ ]-------[/]------+



      Input                                          Input-1

-------[ ]---------------------------------------------(  )-



This code is generally anticipated to work in all PLC’s. But it is worth bearing in mind that PLC’s generate the ‘Timer Done’ signal at the end of the scan, during the IO update. Although it does not effect the operation of this set of rungs, it can effect the operation of other rungs. Generally speaking Timer Flags and other specialised functions ( Counters etc... ) cannot be used with the same degree of ease as other flags within a PLC. This kind of detail about the update of the timer flags will not be contained in the PLC software manual, and thus has to be tested to see how it operates in individual PLC’s and how it affects the processing of the software.��A variant of the code above would be change the third rung to include ‘Chnge Detected’ contacts :-



      Input     TmrDn    ChngDet                     Debouncd

-------[ ]-------[ ]------[/]---+----------------------(  )-

                                |

      Retain    TmrDn           |

-------[ ]---+---[/]----+-------+

             |          |

             |  ChngDet |

             +---[ ]----+



This variant of the code would ensure that the software would work on any PLC, independent of when the ‘TmrDn’ flag was updated in the software.



�Software to produce Cyclic Flags.



Cyclic flags are flags that come ON for one scan in turn, they are used to separate out PLC functions, so that each scan of the PLC performs slightly different tasks. This is useful to reduce overall PLC update time, when certain functions are not required to be performed every scan, they can be jumped over ( using a JMP / SKIP function ), when they are not called to run. The other use of cyclic flags is when ensuring that motors do not start on the same scan of the PLC as each other, this permits an Inhibition Timer to be started so that the next pump is inhibited from starting on the next scan.



      Cyc_B                                   Cyc_A

-------[ ]-------------------------------------(  )-

      Cyc_C                                   Cyc_B

-------[ ]-------------------------------------(  )-

      Cyc_D                                   Cyc_C

-------[ ]-------------------------------------(  )-

      Cyc_E                                   Cyc_D

-------[ ]-------------------------------------(  )-

      Cyc_A Cyc_B Cyc_C Cyc_D                 Cyc_E

-------[/]---[/]---[/]---[/]-------------------(  )-



NOTE:	On the first scan of the PLC, the first flag to be energised is ‘Cyc_E’. This may not be a critical factor, but on the other hand it might.



A typical pump rung would be :-

                                                          Actual

     RunPmpA    CycleA  InhTmng    RunPmpA                RunPmpA

-------[ ]-------[ ]-----[/]--+-----[]---------------------(  )-

                              |

      Retain                  |

-------[ ]--------------------+



RunPmpA	- Conditions for Running Pump A

CycleA 	- One of the Cyclic Flags

InhTmng	- Inhibition Timer - ( stopping more than one pump starting in any X secs )



NOTE: The first use of the ‘RunPmpA’ flag is a starting condition, whereas the second is a running condition, for ease of understanding the rung both are needed, whereas in actual fact the first ‘RunPmpA’ could be removed, but it would make the rung more difficult to understand.

�Software Watchdog



The best form of Watchdog, particularly for communications to a SCADA system, or other PLC’s is a flag that cycles as a Square Wave. Cycling with a periodicity of 10 secs, would be about the fastest that could be expected on a communications link. Below is the pair of rungs that would generate a square wave. The Output of the timer - ‘TmrDn’ would only come ON for one scan, at the end of the timing period and would thus reset the Timer input and in the second rung cause the output ‘Square1’ to be toggled.



      TmrDn                              +-----+      TmrDn

-------[/]-------------------------------+     +-------(  )-

                                         | TMR |

                                         |     |

                                         |     |

                                         +-----+

      Square1   TmrDn                                 Square1

-------[/]-------[ ]------+----------------------------(  )-

                          |

      Square1   TmrDn     |

-------[ ]-------[/]------+



The detection rungs for a Square Wave coming in from a remote PLC, would look like this :-



      SqIn1     SqIn-1                               ChngeDet

-------[ ]-------[/]------+----------------------------(  )-

                          |

      SqIn1     SqIn-1    |

-------[/]-------[ ]------+



     ChngDet                             +-----+      Alarm

-------[/]-------------------------------+     +-------(  )-

                                         | TMR |

                                         |     |

                                         |     |

                                         +-----+

      SqIn1                                           SqIn-1

-------[ ]---------------------------------------------(  )-





NOTE:	The Alarm would clear once the Square Wave input was re-established, thus if there are many fleeting alarms, it could indicate that the timer within the detecting PLC, is too short or the Square Wave periodicity is too fast for the communications to handle. It must be remembered that communications demands vary and at the end of a shift, the comms might be loaded with report data which will slow it down and thus at the end of each shift might generate a spurious watchdog alarm, while a report prints out.

�Alarm Handling

Analogue Out Of Range - Detection and Handling

Analogue inputs in PLC’s are normally converted to an integer number using a twelve bit AtoD convertor. Being twelve bit the value at FSD ( Full Scale Deflection ) is 212 = 16384. Some PLC’s however produce a higher value when the analogue input exceeds the upper limit and a lower value when the analogue falls below the lower limit, as shown in the table below. This allows the software to clip the analogue to the correct range and alarm for the analogue being ‘Analogue Out of Range’.

	Current	Voltage	Value in

	mA	Volts	Register

	20.5 	xx	16793

	20	5	16384

	4	1	3276

	3.5	xx	2867

	0	0	0



In PLC’s that don’t automatically clip the analogue, the software used to monitor this condition, is as below :-

     +--------------+                                Alarm 

-----+ LIM          +---------------------------------( )---

     +      16793   +

     +      I:2.0   +

     +       2867   +

     +--------------+

                                          +--------------+ 

------------------------------------------+ MOV          +--

                                          +     I:2.0    +

                                          +      N7:1    +

                                          +--------------+



     +--------------+                     +--------------+ 

-----+ LES          +---------------------+ MOV          +--

     +      I:2.0   +                     +      3276    +

     +       3276   +                     +      N7:1    +

     +--------------+                     +--------------+ 



     +--------------+                     +--------------+ 

-----+ GTR          +---------------------+ MOV          +--

     +      I:2.0   +                     +     16384    +

     +      16384   +                     +      N7:1    +

     +--------------+                     +--------------+ 



This software alarms when the Analogue input has gone outside the limits, and overwrites the N7:1 register with the clipped version of the Analogue Input. The N7:1 is then to be used throughout the software in place of the I:2.0.



Alarm Checking for Pumps / Motors with Contactors

This is identical in format to the Valve Checking. [ See Later ]

Alarm Checking for Pumps / Motors with Inverters

not typed in yet - Two timers, with different values in each.



     RunCmd                              +--------+   

-------[ ]-------------------------------+  Start +---

                                         |   TMR  |

                                         |        |

                                         | 15secs |

                                         +--------+



     RunCmd                              +--------+   

-------[/]-------------------------------+  Stop  +---

                                         |   TMR  |

                                         |        |

                                         |  2secs |

                                         +--------+

      StrtTmr

        Dn      Running                          Alarm

-------[ ]-------[/]------+-----------------------(  )-

                          |

      StopTmr             |            

        Dn      Running   |

-------[ ]-------[ ]------+



Alarm Handling on a Word Basis



Although their are many ways of handling alarms and slight variations as to exactly how to handle alarm acknowledging. Alarms can be handled on a word basis and this makes for some efficient code, since the logic can either be repeated for other words or can use indexed addressing to handle multiple words, and therefore large numbers of alarms. The basic building blocks are the three words ( or sets of words ) :-��	- Alarm Word ( or Words )	= ALARM�	- Acknowledged Alarm Word ( or Words )	= ACKNOW�	- UnAcknowledged Alarm Word ( or Words )	= KLAXON�

	KLAXON = ( ALARM .XOR. ACKNOW ) .AND. ALARM 



	if the KLAXON word is Non Zero then Sound the KLAXON



When Acknowledge pushbutton ( or equivalent ) is pressed :-



	ACKNOW = ALARM

	

This handles the very basics of alarms, there may be further alarming requirements such as :-  priority alarms; or warnings that don’t require to be klaxoned.



To trap fleeting alarms and to stop alarms disappearing before they have been acknowledged, an additional word has to be introduced. The ALARM_2 word, is a variant of the ALARM word, and is to be used in place of the ALARM word in the previous logic specified above. Additional code has to be introduced to transfer the alarm data over to this new ALARM_2 word.



	TEMP1 = ALARM .XOR. ALARM_2

	IF TEMP1 < > 0 THEN�		TEMP1NOT = 1 - TEMP1

		‘ Disappearing Alarms�		IF ( ALARM_2 .AND. TEMP1 ) > 0 THEN

			ACKNOT = 1 - ACKNOW�			ALARM_2 = ( ALARM_2 .AND. TEMP1NOT ) .OR. ( ACKNOT .AND. TEMP1 )�		ENDIF�		‘ Appearing Alarms�		IF ( ALARM .AND. TEMP1 ) > 0 THEN

			ALARM_2  = ( ALARM .AND. TEMP1NOT ) .OR. ( ALARM_2 .AND. TEMP1 )�		ENDIF�	ENDIF

THIS NEEDS CHECKING



Although this looks a lot more complicated, it correctly traps and holds alarms until they are acknowledged, unlike the simple version this correctly handles the fleeting alarms ( alarms that are no longer active by the time they are acknowledged ).

�Valve Positional Checking

Two Positional Valves



Two Positional Valves are valves that have just two positions, ‘Opened’ and ‘Closed’, and are not intended to remain in a mid position, ‘Half Open’. This type of valves normally has just one controlling digital output from the PLC, but sometimes they have two. The ladder rungs below show the Valve Checking circuitry for a single PLC output, the ladder logic will have to be modified to incorporate the twin output variant.



      Open      Open-1                                Dummy  

-------[ ]-------[/]------+----------------------------(  )-

                          |

      Open      Open-1    |

-------[/]-------[ ]------+



      Dummy                              +-----+      TmrDn

-------[/]-------------------------------+     +-------(  )-

                                         | TMR |

                                         |     |

                                         |     |

                                         +-----+



      Open      Opened        TmrDn     Avail         Alarm  

-------[ ]-------[/]------+----[ ]---+--[ ]------------(  )-

                          |          |

      Open      Closed    |          |

-------[/]-------[/]------+          |

                                     |

      Opened    Closed               |

-------[ ]-------[ ]-----------------+

                                     |

      Retain     Reset               |

-------[ ]-------[ ]-----------------+



      Open                                            Open-1 

-------[ ]---------------------------------------------(  )-





The more simpler coding to acheive more of less the same result can be defined as follows :-



      Open      Opened        Avail     +-------+     Alarm  

-------[ ]-------[/]------+----[ ]------+  TMR  +--+---(  )-

                          |             +       +  |

      Open      Closed    |             +       +  |

-------[/]-------[/]------+             +       +  |

                                        +       +  |

                                        +-------+  |

                                                   |

                                                   |

      Opened    Closed                             |

-------[ ]-------[ ]------+------------------------+

                          |

      Retain    Reset     |

-------[ ]-------[/]------+



Depending on the sensitivity of the plant, this alternative may prove to be adequate, but it is necessary to identify the shortfalls in this simpler approach, so as to justify the more complex. At first sight they look as if they are performing the same function, but consider the condition, where the valve is sitting on one of it’s limit switches, but without instruction from the PLC, drifts off the limit switch. The first logic would detect this immediately and alarm. The second logic would require to see the valve off it’s limit switch for the duration of the stroke time before alarming, this could be as much as a couple of minutes, depending on the size of the valve. Also if the valve was just dancing ON and OFF it’s limit switch, it is unlikely that the second logic would identify any error atall. Admittedly valves rarely do fail in such a manner, but the consideration is worth bearing in mind.



�Proportional Valves



Often proportional valves also have an analogue feedabck to show their percentage open. This is an extra that can be incorporated into the code below. The code assumes that no analogue positional feedback is available. It requires the engineer to set the stroke time of the valve ( including at least a 20% margin ) into a register. There are two registers required, specified below. :-



	N7:1 - Stroke time  ( including 20% margin ), specified in seconds.

	N7:2 - Estimated Position ( as a proportional of the stroke time)



This can thus be displayed on a SCADA system :-



	SCADA = 100 * EstimatedPosition

		StrokeTime





                           1st   Valve                Chcking

     OpenedLS              SCAN  Reset Avail Auto     Allowed

-------[ ]------+-----+----[/]---[/]----[ ]---[ ]-------(  )-

                |     |     

     ClosedLS   |     |     

-------[ ]------+     |       

                      |

     Retain           |

-------[ ]------------+



      ClosedLS                                +-----------+

-------[ ]------------------------------------+ MOV     1 +-

                                              |      N7:2 |

                                              +-----------+



      OpenedLS                                +-----------+

-------[ ]------------------------------------+ MOV  N7:1 +-

                                              |      N7:2 |

                                              +-----------+



      Open    1secPulse                       +-----------+

-------[ ]-----[ ]----------------------------+ ADD  N7:2 +-

                                              |         1 |

                                              |      N7:2 |

                                              +-----------+



      Close   1secPulse                       +-----------+

-------[ ]-----[ ]----------------------------+ SUB  N7:2 +-

                                              |         1 |

                                              |      N7:2 |

                                              +-----------+



      Chcking                                        Failed

      Allowed   +-----------+                       to Close

-------[ ]------+ LES  N7:2 +-------------------------(  )-

                +         0 +

                +-----------+

      Chcking                                        Failed

      Allowed   +-----------+                       to Open 

-------[ ]------+ GRT  N7:2 +-------------------------(  )-

                +      N7:1 +

                +-----------+

These two Failed signals do not require to be latched. As they will reset when one of the limit switches is reached, or the valve is taken out of Auto. The two rungs can be replaced by a single rung, which can also include the checking for both ‘Opened’ and ‘Closed’ at the same time.

�This single rung uses the limit instruction. :-



           Chcking                                        Valve 

      Allowed   +-----------+                       Failed  

-------[ ]------+ LIM  N7:1 +--+----------------------(  )-

                +      N7:2 +  |

                +         0 +  |

                +-----------+  |

                               |

      Opened   Closed          |

-------[ ]------[ ]------------+



Conclusion

In these examples you will have seen an extensive use of ‘PreviousScan’ flags and their use in multiple branches of a single rung. The reason for this is that they are a very accurate and concise way of delivering the desired results.



I hope that the examples have been enlightening, and provided food for future thought. My aim was two fold, firstly to acknowledge that these discrete requirements exist, and that they can be found in most types common examples of PLC software, and secondly to offer a solution to these requirements.



I hope that this document and it’s counterpart discussing Duty / Standby arrangements should make for interesting reading for anyone involved in the writing of PLC software.





[ G.McCormack - Jan ‘97 ] 		Page � PAGE �2� of  � NUMPAGES  \* MERGEFORMAT �17�








